Unsupervised segmentation of ultrasound images by fusion of spatio-frequential textural features

نویسندگان

  • Said Benameur
  • Max Mignotte
  • Frédéric Lavoie
چکیده

Image segmentation plays an important role in both qualitative and quantitative analysis of medical ultrasound images. However, due to their poor resolution and strong speckle noise, segmenting objects from this imaging modality remains a challenging task and may not be satisfactory with traditional image segmentation methods. To this end, this paper presents a simple, reliable, and conceptually different segmentation technique to locate and extract bone contours from ultrasound images. Instead of considering a new elaborate (texture) segmentation model specifically adapted for the ultrasound images, our technique proposes to fuse (i.e. efficiently combine) several segmentation maps associated with simpler segmentation models in order to get a final reliable and accurate segmentation result. More precisely, our segmentation model aims at fusing several K-means clustering results, each one exploiting, as simple cues, a set of complementary textural features, either spatial or frequential. Eligible models include the gray-level co-occurrence matrix, the re-quantized histogram, the Gabor filter bank, and local DCT coefficients. The experiments reported in this paper demonstrate the efficiency and illustrate all the potential of this segmentation approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Multilevel fusion for classification of very high resolution remote sensing images. (Fusion multiniveau pour la classification d'images de télédétection à très haute résolution spatiale)

Remote sensing is a promising technology that finds as diverse applications as defence, urbanplanning, healthcare, and environmental management. Collecting countrywide statistics of cropyield is one of the main tasks of remote sensing. Acquiring and processing very high-resolution(VHR) satellite images are means accomplishing this task. Processing these remotely sensed(RS) image...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011